

Assumptions associated with t-test

- Population distribution of sample is normal
 Probability (random) sampling
- Level of measurement
- Dependent variable is continuous
- Observed or measured data must be independent
 - If interaction is unavoidable use a stringent alpha value (p<.01)
- Homogeneity of variance
 - Assumes that samples are obtained from populations of equal variance
 - ANOVA is reasonably robust against this

Why t-test is important?

- Highly used technique for hypothesis testing
- Can lead to wrong conclusions
 - Type 1 error
 - Reject null hypothesis instead of accepting
 - When we assume there is a difference between groups, when it is not
 - Type 2 error
 - · Accept null hypothesis instead of rejecting
 - When we assume there is no difference between groups, when there is
 - Solution
 - Interdependency between both errors
 - Selection of alpha level

Factors influencing power of t-test

- Sample size
- Strength of interdependency between dependent and independent variable (Strength of Association or Effect Size)
- Alpha level

Procedure for independent sample t-test

- Analyze
 - Compare means
 Independent sample t-test

Interpreting independent samples t-test

- Group statistics
- Look for N (missing values)
- Independent samples test
 - Levene's test
 - If sig value is higher than 0.05 use equal variance assumed
 If sig value is lower than 0.05 use equal variances not
 - If sig value assumed
- Assessing difference between groups
 - If the sig (2-tailed) is equal or less than 0.05
 - There is a significant difference in the mean scores
 - If the sig (2-tailed) is great than 0.05
 - There is no significant difference between the two groups

University of Brighton

Session overview

- Basic Concept
- Factor Analysis Model
- Types of factor analysis
- Statistics Associated with Factor Analysis
- Conducting factor analysis
- Applications of factor analysis

Basic concept

- A data reduction technique designed to represent a wide range of attributes on a smaller number of dimensions.
 Eactor analysis is an interdependence technique
- Factor analysis is an interdependence technique
 in that an entire set of interdependent relationships is examined without making the distinction between dependent and independent variables.
- Factor analysis is used in the following circumstances:
 To identify underlying dimensions, or factors, that explain the correlations among a set of variables.
 - To identify a new, smaller, set of uncorrelated variables to replace the original set of correlated variables in subsequent multivariate analysis (regression or discriminant analysis).
 - To identify a smaller set of salient variables from a larger set for use in subsequent multivariate analysis.

University of Brighton

Exploratory Factor Analysis

- A company producing single malt scotch whisky has asked you to study the status consumption behaviour within a specific group of people. Through literature you have developed three constructs which influence consumer choice of such status consumption brand.
- The three constructs are:
 - Psychological association scale
 - Brand association scale
 - Situations/events scale

· to be more attractive than others.

The question How to know what factors are important to consumers? What variables are grouped together in consumer mind? There being no dependent variable how can I measure the impact?

Statistics Associated with Factor Analysis

Communality

- Communality is the amount of variance a variable shares with all the other variables being considered. This is also the proportion of variance explained by the common factors.
- Eigenvalue
 The eigenvalue represents the total variance explained by each factor.
- Factor loadings

 Factor loadings

 Factor loadings
- Factor loading plot
 A factor loading plot is a plot of the original variables using the factor loadings as coordinates.
- Factor matrix A factor matrix contains the factor loadings of all the variables on all the factors extracted.
- Scree plot
- A scree plot is a plot of the Eigenvalues against the number of factors in order of extraction. Factor scores
- Factor scores are composite scores estimated for each respondent on the derived factors.

University of Brighton

							- P		tions
				Total Vari	ance Explained				
		Initial Eigenvalu	es	Extractic	in Sums of Squar	ed Loadings	Rotation	Sums of Squar	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
	6.815	40.087	40.087	6.815	40.087	40.087	4.741	27.887	27.887
	2.915	17.145	57.231	2.915	17.145	57.231	3.440	20.237	48.124
	1.328	7.812	65.043	1.328	7.812	65.043	2.876	16.920	65.043
	4.965	5.679	70.722			1 1 I			
	.732	4.308	75.030						
	.568	3.343	78.372 81.637						
	485	2.851	81.637						
	400	2.001	86 964						
0	.391	2 298	89 261						
1	.373	2.196	91,457						
2	.345	2.029	93,487						
3	.296	1.742	95.229						
4	.239	1.407	96.636						
5	.209	1.230	97.866						
6	.192	1.130	98.996						
7	.171	1.004	100.000						
xtraction Me	thod: Princip	al Component Ar	alysis.						
			(Cumula	ative per	cent of v	arianc	e explair	ned.
					F				

Show who I am More value Presence of others Notice by others Popularity Attractiveness Status not related to me	Symbol of prestige Symbol of success Indicate wealth Indicate achievement Gain respect	Status is important to m Status enhance my ima Interest in status Willing to try new drink Pay more for status
---	--	--

Applications of factor analysis

- A more concise representation of the marketing situation and hence communication may be enhanced
- Fewer questions may be required on future surveys
 Market segmentation and identifying the underlying variables on which to group customers
- Identifying brand attributes that influence customer choice
- Identifying media consumption habits of consumersPerceptual maps become feasible

